Course Schedule of MST Program ,TIGP

Semester: Fall, 2010(99 學年度上學期)

Course(科目): Advanced Physical Chemistry (I)-高等物化(I) Time(時間): 9:1 0~12:00 am, Tuesday(T2T3T4) or 10:00~11:30 am, Tuesday, 10:00~11:30 am, Thursday(T3T4,R3R4) Room(教室): 311 IAMS 中研院原分所 R311(台大校園) NTHU coordinator(清大教師): 倪其焜

Course speakers(授課老師): Michitoshi Hayashi 林倫年、Kaito Takahashi 高橋開人

、Yen-Chu Hsu 許豔珠

Required(必修課), credit(學分): 3 Course No.(科號): TIGP727100

Date	lecturer	Date	lecturer
9/14 Tuesday 9:1 0~12:00	Prof. Kaito Takahashi	12/07 Tuesday 10:00~11:30	Prof. Yen-Chu Hsu
9/21 Tuesday 9:1 0~12:00	Prof. Kaito Takahashi	12/09 Thursday 10:00~11:30	Prof. Yen-Chu Hsu
9/28 Tuesday 9:1 0~12:00	Prof. Kaito Takahashi	12/14 Tuesday 10:00~11:30	Prof. Yen-Chu Hsu
10/5 Tuesday 9:1 0~12:00	Prof. Kaito Takahashi	12/16 Thursday 10:00~11:30	Prof. Yen-Chu Hsu
10/12 Tuesday 9:1 0~12:00	Prof. Kaito Takahashi	12/21 Tuesday 10:00~11:30	Prof. Yen-Chu Hsu
10/19 Tuesday 9:1 0~12:00	Prof. Kaito Takahashi	12/23 Thursday 10:00~11:30	Prof. Yen-Chu Hsu
10/26 Tuesday 9:1 0~10:30	Prof. Michitoshi Hayashi	12/28 Tuesday 10:00~11:30	Prof. Yen-Chu Hsu
11/02 Thursday 9:1 0~10:30	Prof. Michitoshi Hayashi	12/30 Thursday 10:00~11:30	Prof. Yen-Chu Hsu
11/09 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	1/04/2011 Tuesday 10:00~11:30	Prof. Yen-Chu Hsu
11/16 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	1/06/2011 Thursday 10:00~11:30	Prof. Yen-Chu Hsu
11/23 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	1/11/2011 Tuesday 10:00~11:30	Prof. Yen-Chu Hsu
11/30 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	1/13/2011 Thursday 10:00~11:30	Prof. Yen-Chu Hsu

	Part 1 (Week 1-week6)
Speaker	Prof. Michitoshi Hayashi
	林倫年教授

	<the 3="" first="" weeks=""></the>
	Quantum mechanical principles
	\rightarrow Uncertainty principle and relations
	\rightarrow The principle of superposition
	The dynamics of microscopic systems
	→Schrödinger equation
	→Wave function
	→Operator algebra
	\rightarrow Eigenvalues and eigenvectors
	→Observables
Class Outline	\rightarrow Stationary states
	\rightarrow The Virial Theorem
	<the 3="" last="" weeks=""></the>
	Approximations
	\rightarrow Perturbation method
	\rightarrow Variational principle
	Simple applications
	\rightarrow Harmonic oscillator
	\rightarrow Diatomic systems
	Introduction to many electron systems
	\rightarrow Independent particle approximation
	\rightarrow Correlation effects
	This course consists of two parts: introduction of (1) the basic
	principles of quantum mechanics and (2) the essentials of the
	solving methods of Schrödinger equation and its applications to
	simple and important systems.
Introduction	The first 3 weeks, we will discuss the dynamics of microscopic
Introduction	systems and quantum mechanical principles. The last 3 weeks, we
	will see how quantum mechanics works for some of the simplest
	systems including hydrogen atom, hydrogen molecules using
	several approximation techniques.
	Problem sets will be provided weekly to trace understanding of the
	materials.
Grading	The final grade will be determined by
Crucing	Problem sets (60%)
	Exam (40%)
Textbook	Lecture Notes
	Reference
	Atkins' Physical Chemistry
	-

	Part 2 (Week 7-week12)
Speaker	Prof. Kaito Takahashi
	高橋開人教授

	<week 7-9=""></week>	
Class Outline	Atomic electronic structure	
	• Hydrogen like atom wave function	
	• Atomic orbitals and ionization energy	
	• Spectra and selection rules	
	<week 10-12=""></week>	
	Molecular Structure and electronic properties	
	Born-Oppenheimer approximation	
	• Molecular orbitals of diatomic molecule	
	• Molecular orbitals of polyatomic molecule	
	• Prediction on molecular properties	
	This class will use the basis techniques learned in the	
	previous weeks to understand (1) atomic electronic structure	
	and (2) molecular structure and electronic properties.	
	In the first three weeks we will study the electronic	
	wave functions of the hydrogen like wave functions and learn	
	the effect of shielding and electron repulsion. Furthermore,	
Introduction	selection rules for atomic structure will also be studied.	
	In the last three weeks we extend the study to include	
	nuclear motion and study molecules. After learning the	
	Born-Oppenheimer approximation, molecular orbitals of	
	diatomic and polyatomic molecules will be studied. The	
	possibility to predict molecular properties from calculation	
	will be mentioned at the end.	
	Home work (30%)	
Grading	Class room quiz (30%)	
B	Test (40%)	
Textbook	Atkin&DePaula, "Physical Chemistry"	

	Part 3 (Week 13-week18)
Speaker	Prof. Yen-Chu Hsu
	許豔珠教授

	1. Symmetry and symmetry classification	
	2. Group theory	
Class Outline	3. Symmetry in Quantum Theory	
	4. Rotational spectroscopy: selection rules, line width and	
	stark effect.	
	5. Rotational spectroscopy and Astrophysics	
	This part will follow closely the textbook (chapter 12 and	
Introduction	section 1-8 of chapter 13). Additional handout will be given in	
	the classes.	
	1. Homework (40%).	
Grading	2. Attendance (25%).	
	3. Examination (35%).	
Textbook	Atkin's Physical Chemistry, 8 th edition(Oxford Univ., 2006)	